Carrier-envelope offset stabilization of a GHz repetition rate femtosecond laser using opto-optical modulation of a SESAM.
نویسندگان
چکیده
We demonstrate, to the best of our knowledge, the first carrier-envelope offset (CEO) frequency stabilization of a GHz femtosecond laser based on opto-optical modulation (OOM) of a semiconductor saturable absorber mirror (SESAM). The 1.05-GHz laser is based on a Yb:CALGO gain crystal and emits sub-100-fs pulses with 2.1-W average power at a center wavelength of 1055 nm. The SESAM plays two key roles: it starts and stabilizes the mode-locking operation and is simultaneously used as an actuator to control the CEO frequency. This second functionality is implemented by pumping the SESAM with a continuous-wave 980-nm laser diode in order to slightly modify its nonlinear reflectivity. We use the standard f-to-2f method for detection of the CEO frequency, which is stabilized by applying a feedback signal to the current of the SESAM pump diode. We compare the SESAM-OOM stabilization with the traditional method of gain modulation via control of the pump power of the Yb:CALGO gain crystal. While the bandwidth for gain modulation is intrinsically limited to ∼250 kHz by the laser cavity dynamics, we show that the OOM provides a feedback bandwidth above 500 kHz. Hence, we were able to obtain a residual integrated phase noise of 430 mrad for the stabilized CEO beat, which represents an improvement of more than 30% compared to gain modulation stabilization.
منابع مشابه
tic s ] 2 2 Ju l 2 01 1 Offset frequency dynamics and phase noise properties of a self - referenced 10 GHz Ti : sapphire frequency comb
This paper shows the experimental details of the stabilization scheme that allows full control of the repetition rate and the carrier-envelope offset frequency of a 10 GHz frequency comb based on a femtosecond Ti:sapphire laser. Octave-spanning spectra are produced in nonlinear microstructured optical fiber, in spite of the reduced peak power associated with the 10 GHz repetition rate. Improved...
متن کاملOffset frequency dynamics and phase noise properties of a self-referenced 10 GHz Ti:sapphire frequency comb.
This paper shows the experimental details of the stabilization scheme that allows full control of the repetition rate and the carrier-envelope offset frequency of a 10 GHz frequency comb based on a femtosecond Ti:sapphire laser. Octave-spanning spectra are produced in nonlinear microstructured optical fiber, in spite of the reduced peak power associated with the 10 GHz repetition rate. Improved...
متن کاملCEO stabilization of a femtosecond laser using a SESAM as fast opto-optical modulator.
We present a new method for intra-cavity control of the carrier-envelope offset (CEO) frequency of ultrafast lasers that combines high feedback bandwidth with low loss, low nonlinearity, and low dispersion. A semiconductor saturable-absorber mirror (SESAM) inside a modelocked laser is optically pumped with a continuous-wave (cw) laser. In this way, the SESAM acts as intra-cavity opto-optical mo...
متن کاملPhase-coherent link from optical to microwave frequencies by means of the broadband continuum from a 1-GHz Ti:sapphire femtosecondoscillator.
An optical clockwork is created with a compact 1-GHz repetition-rate laser and three nonlinear crystals. The broadband continuum output of the laser covers sufficient bandwidth to provide direct access to its carrier-envelope offset frequency without the use of a microstructure fiber. We phase lock the femtosecond comb to a Ca optical standard and monitor the stability of the repetition rate, f...
متن کاملPhase-stabilization of the carrier-envelope-offset frequency of a SESAM modelocked thin disk laser.
We phase-stabilized the carrier-envelope-offset (CEO) frequency of a SESAM modelocked Yb:CaGdAlO₄ (CALGO) thin disk laser (TDL) generating 90-fs pulses at a center wavelength of 1051.6 nm and a repetition rate of 65 MHz. By launching only 2% of its output power into a photonic crystal fiber, we generated a coherent octave-spanning supercontinuum spectrum. Using a standard f-to-2f interferometer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Optics letters
دوره 42 22 شماره
صفحات -
تاریخ انتشار 2017